久久专区亚洲精品无码系列,国产熟女乱子视频正在播放,精品久久久久久久无码人妻热,激情久久av一区av二区av

經典案例

SuoFu Machinery

攪拌技術--在制藥發(fā)酵工藝中的經典應用

發(fā)布時間:[2013-04-01]

發(fā)酵攪拌技術

攪拌器的主要作用

混合:將混溶的液體混合均勻,在整個發(fā)酵罐內形成均一的濃度分布。

傳熱:將發(fā)酵過程中產生的大量的熱量移出發(fā)酵罐 (冷卻盤管或者罐外螺旋板冷卻夾套等)

氣體分散:無菌空氣通過氣體噴射環(huán)或分布管引入發(fā)酵罐內。攪拌槳必須能夠有效地將氣體分散到液體中去,以促進微生物生長,生成最終產品。

槳型設計 :

必須兼顧剪切(有助于氣體分散到液體中去)和宏觀混合流動兩方面。

槳型設計還應充分考慮產品的特性,根據產品對剪切的敏感性的不同,可分別選擇高剪切攪拌槳或者低剪切攪拌槳。

高剪切型渦輪槳 – 適用于對剪切不敏感的產品

低剪切型渦輪槳– 適用于對剪切敏感的產品

生物制藥 -幾種特殊的無菌級發(fā)酵攪拌槳

發(fā)酵罐內攪拌槳配置

某公司 120m3 土霉素發(fā)酵罐現狀

設備的直徑為3800mm,直邊高度為9300mm,上下為標準橢圓封頭,全容積約120m3,裝料體積約100m3。設備內設置六組換熱管,垂直布置。

發(fā)酵罐的攪拌器采用四層六箭葉圓盤渦輪,槳葉直徑1250mm,配備的電機功率為280kW,10級電機,采用皮帶減速,攪拌轉速分別為125rpm。

120m3 土霉素發(fā)酵罐存在的主要問題

1、能耗分配問題

由于發(fā)酵罐的氣體進口位于發(fā)酵罐的底部,底部攪拌器(即第1個攪拌器)的氣體剪切分散能力顯得十分重要,攪拌的能量耗散應主要集中在此攪拌器,其他位置攪拌器的主要功能是維持氣泡的分散狀態(tài)和釜內的宏觀混合及傳熱,能耗相對較小。而本發(fā)酵罐上下均為相同直徑相同形狀的攪拌器,消耗了同等的攪拌功率,顯然本發(fā)酵罐各攪拌器的能耗分配是不合理的,上面幾層攪拌器的剪切作用近乎于浪費。

2、槳型選擇問題

原發(fā)酵罐的攪拌器采用四層箭葉圓盤渦輪,為常規(guī)的氣體分散攪拌器。該攪拌器為徑流槳,比較適合低粘體系小氣量的攪拌,當氣體流量增大時,其葉片背面形成氣穴,表觀密度下降,攪拌器由于“打滑”而功率下降,氣體的分散能力削弱。右圖為實驗室結果,當氣量到達1VVM時(單位體積液體中每分鐘通過的氣體量),圖中6DT攪拌器(即六直葉圓盤渦輪)的功率下降近25%,同樣六彎葉、六箭葉等圓盤渦輪的特性也基本相似。本發(fā)酵罐的通氣量約為0.96VVM,攪拌器的氣體處理能力已明顯下降。所以本槳型不合理。

3、流型問題

當發(fā)酵液粘度較低時,其攪拌器的設計關鍵是氣體的分散,良好氣體的分散,可增加氣含率、減小氣泡直徑、提高容積傳質系數,從而提高空氣中氧氣的利用率,減小氣體的需求量,節(jié)約能耗。但當發(fā)酵液粘度較高時,發(fā)酵罐內流體的宏觀混合問題就凸現出來,就有可能產生混合分區(qū),氣泡盡管得到了局部的分散,但在整個攪拌槽內得不到均勻的分布。所以,宏觀混合的問題在中高粘度發(fā)酵中與氣體的分散同樣重要。

右圖中彩色箭頭表示的是物料的流動方向。可以看出,現發(fā)酵罐內采用的是四層徑流槳,流體從攪拌器沿徑向發(fā)散,再從攪拌器的上下吸入,每個攪拌器均產生一個獨立的流型,從而產生四個混合分區(qū),各混合分區(qū)之間的物質與能量的交換受到了阻礙,宏觀混合比較差。


120m3 土霉素發(fā)酵罐改造方案

1、合理分配各攪拌器的能耗

改造后本發(fā)酵罐的攪拌功率約為165kW,其中55%分配給底層的氣體分散渦輪DT604,主要用于氣體的分散;其余45%分配給上三層軸流攪拌器SP403,主要用于維持氣泡的分散狀態(tài)和釜內的宏觀混合及傳熱,形成均一的溫度場和濃度場,并有利于體系氣含率的提高。

六凹葉圓盤渦輪攪拌器

2、槳型選擇與流型改善

鑒于原發(fā)酵罐攪拌器存在的槳型和流型問題,我們認為可進行以下幾方面的改造:

上三層徑流槳改為SP403高效軸流槳,使整個攪拌槽內成為一個混合區(qū)域,從而消除混合分區(qū)。此外,發(fā)酵罐內每分鐘的循環(huán)次數約為5次,增強了氣泡的再循環(huán)能力,并可提高氣含率和氧氣的利用率。SP403為寬葉軸流槳,可以兼顧到氣液分散和宏觀混合兩個方面,這對于發(fā)酵工藝來說是至關重要的。SP403槳與傳統的六直葉圓盤渦輪相比,可提高傳質30%;剪切率可降低75%,適用于對剪切敏感的發(fā)酵工藝;能耗可降低45%;能夠提高對剪切敏感的發(fā)酵工藝的得率;

底層六箭葉圓盤渦輪改為DT604六凹葉圓盤渦輪,可防止通氣后功率的下降,從而提高氣體的分散能力和大氣量的處理能力,并可減小對氣量的要求。DT604六凹葉圓盤渦輪徑向流槳,其葉片型式為最優(yōu)化設計的非對稱拋物面,與傳統的六半管葉片圓盤渦輪相比,不僅可以節(jié)能30%以上,而且還可以分散更多的氣體,并且不會產生大的壓降,通氣率對攪拌功率的下降影響較小。

攪拌器選擇:

120m3土霉素發(fā)酵罐攪拌器選型對比

攪拌機內部情況 宏觀流場和溫度分布均勻性比較

1、氣體分散葉輪不同

索孚采用的氣體分散葉輪為六凹葉圓盤渦輪攪拌器,即DT604攪拌器,葉輪直徑為1250mm,葉片高度為250mm,凹面形狀為更符合氣穴行為的類拋物線曲面,采用專用模具壓制,通氣后功率變化很小,即功率對氣量變化不敏感,特別適合大氣量的分散。

DT604攪拌器氣含率高,氧利用率也高一些,估計還可能節(jié)約10%以上的通氣量,這是十分可觀的。

其它方案采用的氣體分散葉輪為六葉圓弧圓盤渦輪攪拌器,葉輪直徑為1250mm,葉片高度為120mm,凹面形狀為圓弧面,采用直徑為219mm的鋼管制造,通氣后功率變化相對較大,大氣量時攪拌器背面容易產生氣穴,導致“打滑”,氣體處理能力下降;

2、功率分配不同

六凹葉圓盤渦輪攪拌器 CFD流場模擬圖

由于發(fā)酵罐的氣體進口位于發(fā)酵罐的底部,底部攪拌器(即第1個攪拌器)的分散能力顯得十分重要,攪拌的能量消耗應主要集中在此攪拌器,其他位置攪拌器的主要功能是維持氣泡的分散狀態(tài)和釜內的宏觀混合及傳熱,能耗相對較小。

杭州索孚方案中的氣體分散葉輪功率占總能耗的55%左右,達90kW。

DT604的設計根據實驗結果還可以進一步改進,如采用傾斜的DT604,具有一定的軸流能力,增加底部物料混合效果,也可適當再減小功率。此外,氣體分布管的位置也很重要,一般位于2/3槳葉直徑處。

其它方案中的氣體分散葉輪功率占總能耗的45%左右,僅為73kW,氣體分散能力明顯較低,攪拌器的能耗分配方案不合理。

3、發(fā)酵罐內的流型不盡相同

< 上一篇< 返回 > 下一篇 >
浙江索孚科技有限公司 版權所有(C)2019 網絡支持 中國化工網 全球化工網 生意寶 著作權聲明 備案號:浙ICP備13005569號-1 后臺管理
返回頂部